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Abstract
Deep neural networks have achieved tremendous
success in various fields; however, training these
models from scratch could be computationally ex-
pensive and requires a lot of training data. There-
fore, recent work has explored different water-
marking techniques to protect the pre-trained
deep neural networks from potential copyright
infringements. Although several existing tech-
niques could effectively embed such watermarks
into the DNNs, they could be vulnerable to ad-
versaries who aim at removing the watermarks.
In this work, we demonstrate that a carefully-
designed fine-tuning method enables the adver-
sary with limited training data to effectively re-
move the watermarks, without compromising the
model functionality. In particular, leveraging aux-
iliary unlabeled data significantly decreases the
amount of labeled training data needed for effec-
tive watermark removal, even if the unlabeled data
samples are not drawn from the same distribution
as the benign data for model evaluation.

1. Introduction
Deep neural networks have been prevalent in our lives due
to the high performance in various applications. Typically,
training these models from scratch is computationally in-
tensive and requires the access to a large set of high-quality
training samples. Therefore, people may resort to pre-
trained models, which opens up the market of Machine
Learning as a Service (MLaaS).

To claim the ownership of the pre-trained model, so that
it is not illegally used or stolen, recent work propose wa-
termarking techniques to protect the models from poten-
tial copyright infringements (Adi et al., 2018; Zhang et al.,
2018; Rouhani et al., 2018; Uchida et al., 2017). A com-
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mon paradigm is to add an additional training objective for
injecting watermarks besides optimizing the prediction ac-
curacy of the model; for example, the model owner could
inject some specially-designed training samples, so that the
model would predict in the ways specified by the owner
when provided with the watermark samples.

In this work, we study the effectiveness of fine-tuning based
watermark removal techniques. To effectively remove the
watermarks while preserving the model performance, fine-
tuning based approaches often require the adversary to have
a sufficient amount of labeled data drawn from the same
distribution as the data used for evaluation. While a large
amount of labeled data could be expensive to collect, un-
labeled data is much cheaper to obtain; e.g., the adversary
can simply download as many images as he wants from the
Internet. By leveraging such inherently unbounded provi-
sion of unlabeled samples, the adversary might be able to
unlock the possibility of watermark removal with limited
in-distribution labeled data. In this work, we propose to uti-
lize the pre-trained model to annotate the unlabeled samples,
and augment the fine-tuning training data with them.

We focus on watermark removal of deep neural networks
for image recognition in our evaluation, where existing
watermarking techniques are shown to be the most effec-
tive. We evaluate our fine-tuning based techniques on two
classes of watermarking techniques, i.e., pattern-based tech-
niques (Zhang et al., 2018; Chen et al., 2017; Gu et al., 2017;
Liu et al., 2017a;b) and instance-based techniques (Adi
et al., 2018; Chen et al., 2017). Specifically, instance-
based techniques inject individual training samples as the
watermarks, while pattern-based techniques inject a set of
samples blended with the same pattern as the watermarks.
We first demonstrate that by carefully designing the fine-
tuning learning rate schedule, the adversary is always able
to remove the watermarks. Furthermore, by utilizing the
unlabeled data, we significantly decrease the amount of
in-distribution labeled samples required for effective wa-
termark removal, even if the unlabeled samples are out-of-
distribution themselves. Our work provides the first success-
ful demonstration of watermark removal techniques against
different watermark embedding schemes, and sheds some
light on the potential vulnerability of existing watermarking
techniques against adversaries who are capable of perform-
ing fine-tuning with limited training data.
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Figure 1. Examples of watermarks generated by the pattern-based
technique in (Zhang et al., 2018). Specifically, after an image is
blended with the “TEST” pattern in (a), such an image is classified
as the target label, e.g., an “automobile” on CIFAR-10.

2. Watermarking for Deep Neural Networks
In this work, we study the watermarking problem as fol-
lows. A model owner trains a model fθ for a certain task
T . Besides training on a dataset drawn from the data distri-
bution of T , the owner also embeds a set of watermarks
K = {(xk, yk)}Kk=1 into fθ. A watermarking scheme
should at least satisfy two properties: (1) functionality-
preserving, i.e., embedding these watermarks does not de-
grade the model performance on T ; (2) verifiability, i.e.,
Pr(fθ(x

k) = yk) � Pr(f ′(xk) = yk) for (xk, yk) ∈ K,
where f ′ is any other model that is not trained with the
purpose of embedding the same set of watermarks.

2.1. Watermarking Techniques

Recent work propose several different watermarking tech-
niques to this end. In this work, we focus on pattern-based
techniques (Zhang et al., 2018; Chen et al., 2017; Gu et al.,
2017) and instance-based techniques (Adi et al., 2018; Chen
et al., 2017), which are studied the most in the literature.

Pattern-based techniques. A pattern-based technique
specifies a key pattern key and a target label yt, so that for
any image x blended with the pattern key, Pr(fθ(x) = yt)
is high. To achieve this, the owner generates a set of images
{xk}Kk=1 blended with key, assigns yk = yt(k ∈ 1, ...,K),
then adds {(xk, yk)}Kk=1 into the training set. Figure 1
shows an example of watermarks generated by pattern-based
techniques. Pattern-based techniques are also used for em-
bedding backdoors into the pre-trained model (Chen et al.,
2017; Gu et al., 2017; Liu et al., 2017a)

Instance-based techniques. For instance-based tech-
niques, different watermarks are generated individually, and
their labels could also be different. Figure 2 presents some
watermarks used in (Adi et al., 2018), where each water-
marking image and its label is randomly sampled.

2.2. Threat Model for Watermark Removal

In this work, we assume the following threat model for the
adversary who aims at removing the watermarks.

(a) (b)

Figure 2. Examples of watermarks generated by the instance-based
technique in (Adi et al., 2018). Different watermarking images
could have different assigned labels.

No knowledge of the watermarks. Some prior work on
detecting samples generated by pattern-based techniques
requires the access to the entire data for pre-training, includ-
ing the watermarks (Tran et al., 2018; Chen et al., 2018).
In contrast, we do not assume the access to watermarks for
pre-training.
No knowledge of the watermarking scheme. Most prior
work on watermark removal relies on the assumption that
the watermarks are pattern-based (Wang et al., 2019; Gao
et al., 2019). In this work, we study fine-tuning as a generic
approach for watermark removal, without the knowledge of
the watermarking scheme.
Limited data for fine-tuning. We assume that the adver-
sary has computation resources for fine-tuning, and this
assumption is also made in previous work studying fine-
tuning for watermark removal (Adi et al., 2018; Zhang et al.,
2018; Liu et al., 2018). Different from most prior work
where the adversary has the same benign data for the task
T as the model owner, we study the scenarios where the
adversary has a much smaller training set for fine-tuning.

3. Fine-tuning for Watermark Removal
In this work, we focus on fine-tuning based approaches
for watermark removal. Specifically, the adversary fur-
ther trains the model with his own data during the fine-
tuning process, and according to catastrophic forgetting
phenomenon (Goodfellow et al., 2013; Kemker et al., 2018),
since the fine-tuning data no longer includes the watermark
samples, the model should forget the previously learned
watermark behavior. In the following, we first propose an
adaption of existing fine-tuning techniques to improve the
efficacy of watermark removal, referred to as Basic Fine-
Tuning (FT-Basic). In cases where the adversary has limited
fine-tuning data, we further propose data augmentation with
unlabeled data, referred to as Fine-tuning with Augmentation
of Unlabeled data (FTAU), which significantly decreases the
amount of in-distribution labeled training samples required
for obtaining a high-accuracy model without watermarks.
Basic Fine-tuning (FT-Basic). Contrary to this intuition,
some prior work show that existing watermarking tech-
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niques are robust against fine-tuning based techniques, even
if the adversary fine-tunes the entire model and has access
to the same benign data as the owner, i.e., the entire data
for pre-training excluding the watermarking keys (Adi et al.,
2018; Zhang et al., 2018; Liu et al., 2018). We find that the
key reason may be that the learning rate for fine-tuning is
too small to change the model weights. In Section 4, we will
demonstrate that by simply increasing the initial learning
rate for fine-tuning the entire model and properly decaying
the learning rate, the adversary is able to remove the water-
marks without compromising the model performance on his
task. We refer to this basic fine-tuning method as FT-Basic.

Fine-tuning with Augmentation of Unlabeled data
(FTAU). Although the above fine-tuning method already
enables the adversary to remove the watermarks, it requires
the adversary to have some labeled training samples to start
with. However, usually the adversary does not have com-
parable amount of training data to the model owner, and
in our evaluation, we find that by fine-tuning with only the
limited labeled data, removing watermarks may cause large
degradation of model accuracy on his task.

To overcome this challenge, we propose to augment the
fine-tuning data with unlabeled samples, which could easily
be collected from the Internet. Let U = {xu}Uu=1 be the
unlabeled sample set. Then we use the pre-trained model as
the labeling tool, i.e., yu = fθ(xu) for each xu ∈ U . Note
that since the accuracy of pre-trained model is not 100%
itself, such label annotation is inherently noisy; in particular,
when U is drawn from a different distribution than the task of
consideration, the assigned labels may not be meaningful at
all. Nevertheless, in Section 4, we will show that leveraging
unlabeled data significantly decreases the in-distribution
labeled samples needed for effective watermark removal.

4. Evaluation
4.1. Evaluation Setup

We evaluate our fine-tuning approaches on CIFAR-10,
CIFAR-100 and STL-10. Our evaluation of pattern-based
techniques uses the text pattern in (Zhang et al., 2018) (see
Figure 1), and our evaluation of instance-based techniques
is based on (Adi et al., 2018) (See Figure 2). In particular,
we consider the following settings:

• The model is pre-trained to perform the same task as
what adversary desires. We conduct experiments on
both CIFAR-10 and CIFAR-100. The unlabeled data
is obtained from the unlabeled part of STL-10, which
includes 100,000 samples. Note that STL-10 images
are very different from CIFAR-10 and CIFAR-100;
in particular, the label sets between CIFAR-100 and
STL-10 barely overlap.

• The model is pre-trained on a different task from what

adversary desires. Note that the labeled part of STL-
10 only includes 5,000 samples, which is insufficient
for training a model with a high accuracy. Therefore,
the adversary can leverage the pre-trained model on an-
other task with a larger training set, then fine-tune the
model on STL-10. This fine-tuning method is widely
adopted for transfer learning (Yosinski et al., 2014),
and is also evaluated in (Adi et al., 2018). In particu-
lar, we perform the transfer learning to adapt from a
pre-trained CIFAR-10 model to STL-10, because we
find that adapting from CIFAR-100 model achieves
much worse results than from CIFAR-10, i.e., the ac-
curacy is around 5% lower, as in (Adi et al., 2018).
We also utilize the unlabeled part of STL-10 for data
augmentation in this setup.

We evaluate both FT-Basic and FTAU on the above setups.
We also compare with a baseline method that trains the en-
tire model from scratch without leveraging the pre-trained
model, denoted as FS. For any model, we consider the water-
marks are removed when the watermark accuracy is similar
to the model trained without watermarks. Specifically, we
consider the watermarks are removed when the watermark
accuracy is below 20% for models pre-trained on CIFAR-10,
and below 10% for models trained on CIFAR-100.

For both FT-Basic and FTAU, we fine-tune the entire model,
as we find that fine-tuning only the output layer is insuffi-
cient for watermark removal, as demonstrated in (Adi et al.,
2018). We find that both the convolutional neural network
architecture and pre-training schedule do not have critical
influence on the effectiveness of watermark embedding and
removal, as long as the pre-trained model achieves a high
test accuracy and fits the watermarks well. Thus, we follow
the same pre-training configuration in (Adi et al., 2018).
In particular, for all experiments, we use the ResNet-18
model (He et al., 2016), and the initial learning rate is 0.1.

As discussed in Section 3, the failure of previous attempts
of fine-tuning based watermark removal mainly due to the
improper design of learning rate schedule during the fine-
tuning stage. For example, the initial learning rate for fine-
tuning is 0.001 in (Adi et al., 2018), which is 100× smaller
than the initial learning rate for pre-training. For all experi-
ments, we set the initial fine-tuning learning rate to be 0.05,
and decay it by 0.9 after every 500 timesteps. More discus-
sion on implementation details can be found in Appendix A.

4.2. Results

We first present the results of transfer learning in Table 1.
Following (Adi et al., 2018), we evaluate the watermark
accuracy on the fine-tuned model by replacing its output
layer with the original output layer of the pre-trained model.
For comparison of the STL-10 test accuracy, we also fine-
tune the pre-trained model with a learning rate of 0.001, so
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that its watermark accuracy remains above 70%, as in (Adi
et al., 2018). We observe that with the FT-Basic method,
removing watermarks already does not affect the model per-
formance on the testset, and using FTAU further improves
the prediction accuracy.

Next, we present results of watermark removal in the non-
transfer learning setting for pattern-based techniques in Ta-
ble 2. First, we observe that when the adversary has 80%
of the entire training set, using FT-Basic already achieves
a higher test accuracy than the pre-trained model, while re-
moving the watermarks. Note that the watermark accuracies
are still above 95% using the fine-tuning approaches in pre-
vious work (Adi et al., 2018; Zhang et al., 2018), suggesting
the effectiveness of our modification.

However, when the adversary only has a small proportion
of labeled training set, the test accuracy could degrade. Al-
though the test accuracy only drops for about 1% on CIFAR-
10 even if the adversary has only 20% of the entire training
set, the accuracy decrease could be up to 5% on CIFAR-100.
By leveraging the unlabeled data, the adversary is able to
achieve the same level of test performance as the pre-trained
model with only 20% ∼ 30% of the entire training set.
Furthermore, FTAU enables the adversary to fine-tune the
model without any labeled training data, and by solely re-
lying on the unlabeled data, the accuracy of the fine-tuned
model achieves within 1% difference from the pre-trained
model on CIFAR-10, and the accuracy of fine-tuned CIFAR-
100 model nearly reaches the performance of the model
trained with 80% CIFAR-100 data from scratch. Note that
the unlabeled STL-10 data samples are drawn from very
different distribution; in particular, the label sets of CIFAR-
100 and STL-10 barely overlap. These results show that
our approach is effective without the requirement that the
unlabeled data comes from the same distribution, which
makes it a simple watermark removal for the adversary, thus
poses threats to the robustness of pattern-based watermarks.

Finally, we present more results of watermark removal
for instance-based techniques in Table 3. Compared to
pattern-based techniques, removing instance-based water-
marks could result in a larger decrease of test accuracy,
indicating that while pattern-based watermarks are more
often used, they are easier to remove than instance-based
watermarks. However, still, our FT-Basic method is more
effective than previous fine-tuning attempts, and FTAU en-
ables the adversary to obtain a model with high accuracy
despite having limited labeled data.

5. Conclusion
In this work, we study the robustness of watermarking tech-
niques, and demonstrate that fine-tuning based approaches
can successfully remove watermarks even if the adversary

Watermarking Technique FS FT-Basic FTAU
Pattern-based

66.15%
82.96% 83.80%

Instance-based 82.83% 83.51%

Table 1. Results of models after watermark removal in the transfer
learning setting. The numbers show the accuracy on the STL-
10 testset. The accuracy of fine-tuned model with pattern-based
watermarks on STL-10 is 82.06%, and the accuracy of model with
instance-based watermarks is 82.89%.

does not have access to the full training data. Moreover,
leveraging unlabeled data further reduces the amount of
labeled data required for effective watermark removal. Our
study highlights the vulnerability of existing watermarking
techniques, and we consider proposing more robust water-
marking techniques as future work.

Dataset Percentage FS FT-Basic FTAU

CIFAR-10

0% − − 92.53%
20% 87.40% 92.12% 92.80%
30% 89.64% 92.22% 93.15%
40% 90.46% 92.93% 93.18%
50% 91.45% 93.08% 93.18%
80% 93.01% 93.52% 94.11%

CIFAR-100

0% − − 70.75%
20% 56.72% 68.88% 71.97%
30% 62.20% 71.05% 72.98%
40% 65.42% 71.96% 73.44%
50% 68.18% 72.58% 73.72%
80% 71.71% 74.23% 75.42%

Table 2. Results of watermark removal against pattern-based tech-
niques for non-transfer learning setting. The first column is the
dataset for model evaluation, the second column is the percentage
of labeled data for fine-tuning compared to the entire benign train-
ing set, and the rest columns show the accuracy on the testset. The
accuracy of the pre-trained model with watermarks on CIFAR-10
is 93.23%, and the accuracy of the pre-trained CIFAR-100 model
with watermarks is 73.83%.

Dataset Percentage FS FT-Basic FTAU

CIFAR-10

0% − − 90.48%
20% 87.40% 91.19% 92.41%
30% 89.64% 91.58% 93.01%
40% 90.46% 92.76% 93.21%
50% 91.45% 92.97% 93.21%
80% 93.01% 93.93% 94.00%

CIFAR-100

0% − − 66.69%
20% 56.72% 66.14% 71.12%
30% 62.20% 68.70% 71.82%
40% 65.42% 70.21% 72.20%
50% 68.18% 71.20% 72.60%
80% 71.71% 73.30% 74.16%

Table 3. Results of watermark removal against instance-based tech-
niques for non-transfer learning setting. The accuracy of the pre-
trained model with watermarks on CIFAR-10 is 93.63%, and the
pre-trained CIFAR-100 model with watermarks is 73.06%.
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A. More Discussion on Experimental Details
Our implementation is in PyTorch 1. We used SGD as the op-
timizer, and set the batch size to be 100 for both pre-training
and FT-Basic, following the setup in (Adi et al., 2018). For
FTAU, when the proportion of labeled samples is greater
than 0, each batch has 100 labeled samples and 50 samples
from the unlabeled STL-10, so the batch size becomes 150.
When there is no in-distribution labeled samples, each batch
includes 100 unlabeled STL-10 samples.

We also consider the fine-pruning method proposed in (Liu
et al., 2018). This paper proposes to first prune part of the
neurons that are activated the least for benign samples, and
then perform the fine-tuning. We evaluate their approach
with the same fine-tuning learning rate schedule as our pro-
posed variants, and find that the results are roughly the same
for all our experimental setups, suggesting that pruning is
not necessary with a properly designed learning rate sched-
ule for fine-tuning. Therefore, we omit the fine-pruning
results in our comparison.

1The implementation is mainly adapted from https:
//github.com/adiyoss/WatermarkNN, the code repo
of (Adi et al., 2018).

https://github.com/adiyoss/WatermarkNN
https://github.com/adiyoss/WatermarkNN

